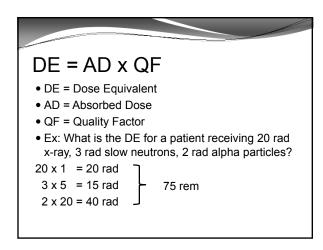
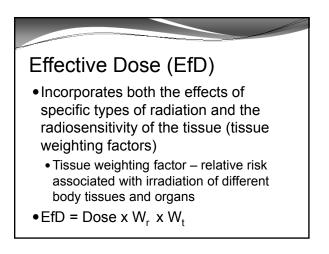


Radiation Exposure & Monitoring

- Units of Measurement
- Dosimeters

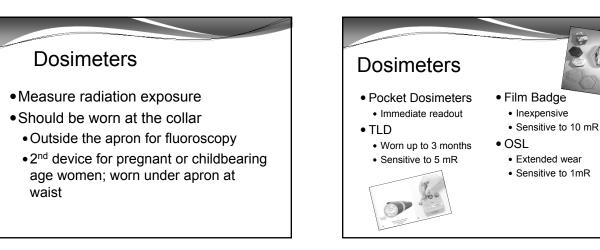

Units of Measurement				
Measurement (Quantity)	Traditional Unit	SI Unit	Medium	Effect
Exposure	Roentgen	Coulomb/kg (C/kg)	Air	Ionization of Air
Absorbed Dose	Rad	Gray (Gy)	Any Object	Amount of Energy Per Unit Mass
	Rem	Sievert (Sv)	Body	Biologic Effects

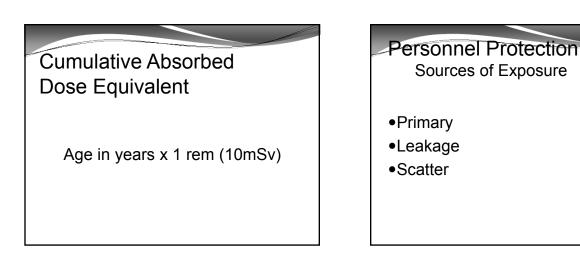


Radiation Quality (Weighting) Factors

1

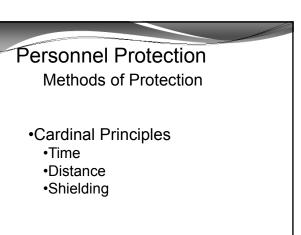
- X-ray, Beta, Gamma
- Slow Neutrons 5
- Fast Neutrons 20
- Alpha Particles 20





Equivalent Dose vs. Effective Dose

- Equivalent Dose uses radiation weighting factors (W_r)to adjust the quantity of absorbed dose to equate various energies of ionizing radiation
- Effective Dose uses tissue weighting factors (Wt) of equivalent dose to reflect the harm to a person as a whole depending on tissues and organs irradiated


Sources of Exposure*					
•Environmental •Cosmic / Terrestrial •Radon	198 mrem/yr <u>97 mrem/yr</u> 295 mrem/yr	1.98 mSv 97 mSv 2.95 mSv			
•Manmade / Artificial •Medical / Dental •Nuclear Medicine •Consumer Products	40 mrem/yr 14 mrem/yr <u>11 mrem/yr</u> 65 mrem/yr	0.40 mSv 0.14 mSv <u>0.11 mSv</u> 0.65 mSv			
Total Annual Exposure *Exposures in US from NCRP	360 mrem	3.60 mSv			

Personnel Protection Sources of Exposure

- Patient
 - Greatest source of scatter radiation
 - At a 90° angle to the x-ray beam at a distance of 1 meter the scattered x-ray intensity is approximately 1/1000 the intensity of the primary beam

Personnel Protection Barriers •Primary

•1/16" Pb eq; 7 ft. high

Secondary

- •1/32" Pb eq; extends to ceiling; overlap 1 by 1/2"
- •Radiation scattering should occur twice before reaching these barriers

Barrier Determination

- •Controlled Area occupied by radiation workers who are trained in radiation safety and wear monitors
 • Exposure must not exceed 100 mR/wk
 •Uncontrolled Area – occupied by general public
- Exposure must not exceed 10 mR/wk

Personnel Protection Radiographic Suite Design

Use Factor

- Percentage of time primary beam is directed toward a particular wall
- One factor in determining barrier thickness
- Workload
 - Determined by the number of x-ray exposures made per week
- Occupancy Factor
 - Reflection of who occupies particular areas
 - Factor in determining barrier thickness

Personnel Protection Protective Devices

- Lead Shielding
 - Aprons 0.5 mm Pb eq
 - Gloves 0.25 mm Pb eq
 - Thyroid Shields 0.5 mm Pb eq
 - Glasses 0.35mm Pb eq
 - Pb Curtain 0.25 mm Pb eq
 - Bucky Slot Cover 0.25 mm Pb eq
 - Pb window 1.5 mm Pb eq

Personnel Protection

- Tube housing
 - Must keep off focus/leakage radiation to no more than 100 mR/hr at 1m (3.3 ft) when tube operated at maximum potential
- Mobile Units
 - 6 foot (180 cm) exposure cord
 - Pb apron
 - RT stands at 90° angle to scattering object

Personnel Protection Special Considerations

- Fluoroscopy
 - Source-to-Tabletop Distance
 - Fixed 15" (38cm)
 - Mobile 12" (30 cm)
 - Exposure Switch Dead-man type
 - Audible Timer 5 minutes
 - Exposure Rate must not exceed 10R/min

Minimizing Patient Exposure

Keep radiation exposure

As Low As Reasonably Achievable

Responsibility of employers and technologists

Minimizing Patient Exposure Exposure Factors

- Highest practical kVp, lowest mAs
- Use AEC when available
- Highest film/screen combinations
- Appropriate SID
- X-ray generator (1Φ, 3Φ, HF)

Minimizing Patient Exposure Shielding

- When to use:
 - Reproductive organs within 5 cm of beam
 - · Doesn't interfere with exam
 - Patient within reasonable reproductive age

Minimizing Patient Exposure Shielding •Types: •Contact •Flat •Shaped •Shadow

Minimizing Patient Exposure Beam Restriction • Decreases patient exposure

- Improves image quality
- Types
 - Collimators
 - Aperture Diaphragms
 - Extension Cylinders/Cones

Minimizing Patient Exposure Filtration

- Removal of low energy photons from the primary beam; hardening of the beam
- Increases average energy of the beam
- Reduces exposure to patient's skin and superficial organs

Minimizing Patient Exposure Positioning

- Choose AP or PA to reduce exposure
 - Scoliosis
 - Oblique c-spine
 - Skull

Minimizing Patient Exposure Communication

- Give clear, concise instructions
- Be truthful about pain/discomfort

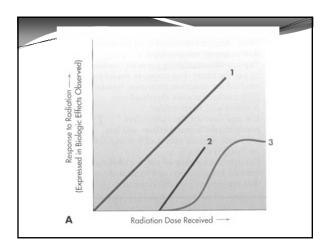
Minimizing Patient Exposure Pediatrics

- Children more vulnerable effects of radiation
- Smaller doses of ionizing radiation are sufficient
- Children have limited ability to understand procedure
 - Explain with age appropriate terminology, use entertaining devices (cartoons, posters, puppets, etc.)
 - Use restraining devices, collimation, shielding

Dose-Response Relationships

- Linear
- Proportional relationship between dose & response
- Nonlinear
- no fixed proportional response between dose & response
- Threshold
- A level is reached below which no effect is observed
- Nonthreshold
- · Even the smallest dose could cause an effect

Dose-Response Relationships


- Linear nonthreshold
- Model to set standards & dose limits
- No threshold
- Response directly proportional to dose received
- No dose rate effect (no reduced effect at small dose rates)
- Curve exhibits a stochastic (statistical) response

Dose-Response Relationships

- Linear quadratic
- Curve is linear or proportional at low dose levels and becomes curvilinear at high doses
- May underestimate low dose effects
- No threshold
- Quadratic response at high dose levels
- Curve exhibits the stochastic (statistical) effect

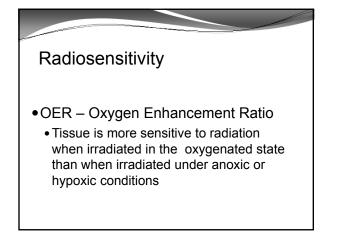
Dose-Response Relationships

- Sigmoid Threshold
 - Applies primarily to the high dose effects seen in radiation therapy
 - Usually does have threshold

Radiosensitivity

- •Law of Bergonie and Tribondeau
 - Radiosensitivity is directly proportional to cellular reproductive activity and inversely proportional to the degree of differentiation
 - Greater damage occurs to cells which are the least mature, least specialized, most rapidly dividing, and have longest mitotic phases

Radiosensitivity


- Cells listed from MOST to LEAST sensitive
 - Lymphocytes
 - Spermatogonia
 - Erythroblasts
 - Platelets
 - Intestinal crypt cells
 - Epithelial cells
 - Muscle cells
 - Nerve cells

Radiosensitivity

- Linear Energy Transfer (LET)
 - Average energy deposited per unit length
 - Low LET
 - Gamma rays
 - X-rays
 - High LET
 - Alpha particles
 - lons of heavy nuclei
 - Low energy neutrons


Radiosensitivity RBE – Relative Biological Effectiveness Compares the biologic effects from equal doses of different types of radiation LET and RBE have a directly proportional

- relationship
- High LET radiations have high RBE

Target Theory

- DNA is the master molecule and is necessary for survival of the cell
- If master molecule is inactivated by exposure to radiation the cell will die

- Indirect
- Radiolysis of water
- Direct
- Target Theory

Types of DNA Damage

- Single-strand break (point mutation)
 - Occurs with low LET
 - Enzymes may be able to repair damage
- Double-strand break
 - More common with high LET
- Main-chain scission
 - Divides a long single molecule into many molecules

Biological Aspects of Radiation

Somatic Effects

- Stochastic (Late)
- Nonstochastic

Stochastic (Late)

- Nonthreshold, random, probablistic
- All or nothing response
- Severity of effect proportional to dose
- Linear or quadratic dose-response
- Ex: cancer and genetic alterations

Nonstochastic (Deterministic/Certainty)

- · Directly related to dose received
- Threshold dose
- Usually occur only after large doses of radiation
- Effects can be manifested as an early or late effect

Early (Acute) Nonstochastic Effects

- Appear within minutes, hours, days or weeks of exposure; short term
 - Nausea
 - Fatigue
 - Epilation
 - Fever
 - Blood disorders
 - Desquamation

Late Nonstochastic Effects

- May takes months or years to manifest or possibly future generations
 - Cataract formation
 - Fibrosis
 - Organ atrophy
 - Loss of parenchymal cells
 - Reduced fertility
 - Sterility

Late Stochastic Somatic Effects

- Cancer
- Embryologic effects (birth defects)

Genetic Effects

 Biologic effects of ionizing radiation on future generations

Acute Radiation Syndrome

- Prodromal
 - Occurs within hours of whole body absorbed dose of 1 Gy (100 rad)
 - Nausea, vomiting, diarrhea, fatigue, and leukopenia
- Latent No visible symptoms
- Manifest Illness
 - Visible symptoms classified as specific syndrome
- Recovery or Death

Hematopoietic / Hematologic

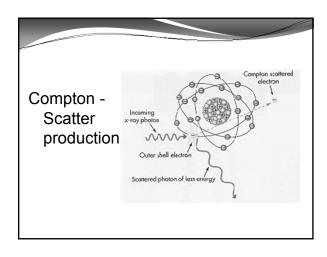
- Bone marrow syndrome
- Whole body dose from 1-10 Gy (100-1000 rad)
- Decrease in WBC and platelets

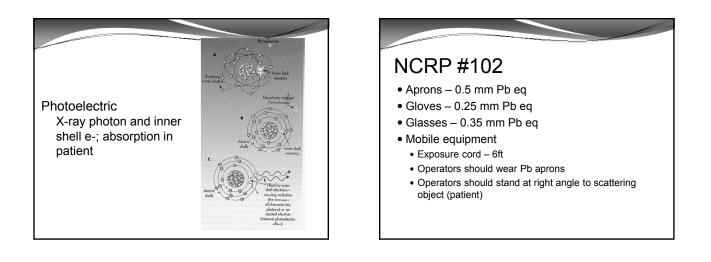
Gastrointestinal • Severe nausea, vomiting, diarrhea, fever, fatigue, loss of appetite, lethargy, anemia, leukopenia, hemorrhage, electrolyte imbalance, emaciation

• 6-10Gy (600-1000 rad)

CNS

- Same symptoms as other syndromes but may not have time to manifest
- 50 Gy (5000 rad)

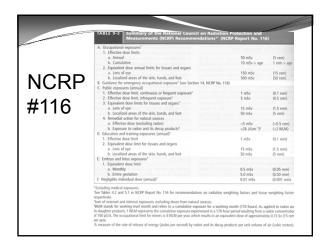

LD 50/30


- Whole body dose that is lethal to 50% of those exposed within 30 days
- 3-4 Gy (300-400 rad)

Dose required per generation to double the spontaneous mutation rate Spontaneous mutation rate is approximately 6% Genetically Significant Dose to the whole population Average annual gonadal equivalent dose to members of the population who are of childbearing age Estimated at 0.2 mSv (20 mrem)

Photon Interactions in Matter

- Coherent (classical)
 - Change in direction of x-ray photon; no energy loss
- Compton
- Photoelectric



NCRP #102

- Tube Housing 100 mR/hr at 1m from source
- SID +/- 2% SID
- Collimator +/- 2% SID
- Filtration 2.5 mm AI (>70 kVp)
- Fluoroscopy Source-to-Tabletop Distance
 - Stationary 15"
 - Mobile 12"

NCRP #102

- Fluoroscopy
 - Primary Protective Barrier interlocked with tube
 - Exposure Switch dead-man type
 - Protective Drape 0.25 mm Pb eq
 - Cumulative Timer audible, 5 min
 - Exposure Rate must not exceed 10R/mn

